Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

	Б1.О.18 Математическая логика
наименование	е дисциплины (модуля) в соответствии с учебным планом
Направление подгото	овки / специальность
02.03	.01 Математика и компьютерные науки
Направленность (про	офиль)
02.03.01.31 M	Іатематическое и компьютерное моделирование
Форма обучения	очная
Год набора	2022

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили	
Доктор физико-матема	атических наук, Профессор, Рыбаков Владимир
	Владимирович
	попуность инишизань фамилия

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Курс «математической логики» имеет целью дать студентам инструмент, применимый как к наукам о поведении (кибернетика, теория информации, теория систем), так и к чисто абстрактным наукам. Основной задачей является ознакомление студентов с алгеброй логики, пропозициональными логиками. Большое внимание уделяется вопросам применения полученных теоретических знаний к решению прикладных задач и умению формулировать прикладные задачи на языке алгебры логики и исчисления предикатов первого порядка.

1.2 Задачи изучения дисциплины

В итоге изучения дисциплины «дискретная математика и математическая логика» студент должен уметь:

-самостоятельно записывать в виде формулы алгебры высказываний, структуру сложного высказывания естественного языка, -строить таблицы истинности формул алгебры высказываний,

- -строить формулу по заданной таблице булевой функции,
- -приводить формулы исчисления высказываний к дизъюнктивной и конъюнктивной нормальным формам,
- -приводить формулы исчисления предикатов к предварённой и сколемовской нормальным формам,
- -строить выводы и доказательства в формальных исчислениях высказываний и предикатов,
 - -строить различные интерпретации для заданных множеств формул,
- -строить вентильные, каскадные схемы и структурные автоматы, реализующие заданные булевы функции,
- -самостоятельно работать с литературой по теории автоматов, теоретическим основам конструирования ПК, и т.д.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование индикатора Запланированные результаты обучения по дисциплине достижения компетенции									
ОПК-1: Способен консультиро	вать и использовать фундаментальные знания в								
области математического анализа, комплексного и функционального анализа									
алгебры, аналитической геометрии, дифференциальной геометрии и топологии,									
	дифференциальных уравнений, дискретной математики и математической логики, теории вероятностей, математической статистики и случайных								
	· · · · · · · · · · · · · · · · · · ·								
• ·	в, теоретической механики в профессиональной								
деятельности									
ОПК-1.8: Использует базовые	Основные факты главных разделов изучаемой								
фундаментальные знания в	дисциплины и наиболее значимые примеры.								

области дискре	тной	Применять строгие методы математической логики
математики и м	атематической	при решении прикладных задач.
логики и консу	льтирует в	Основными правилами логического вывода,
данной предме	тной области	понятиями и методами логической интерпретации
		любых изучаемых теорий.

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

Вид учебной работы	Всего, зачетных единиц (акад.час)	e 1
Контактная работа с преподавателем:	1,89 (68)	
занятия лекционного типа	0,94 (34)	
практические занятия	0,94 (34)	
Самостоятельная работа обучающихся:	1,11 (40)	
курсовое проектирование (КП)	Нет	
курсовая работа (КР)	Нет	

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

			Контактная работа, ак. час.							
		Занятия лекционного типа			тия семин		Самостоятельная			
№ π/π	Молупи темы (разлены) лисциппины			Семинары и/или Практические занятия		Лабораторные работы и/или Практикумы		работа, ак. час.		
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	
1. Ф	ормальные логические исчисления									
	1. Лекция 1. Формальная дедуктивная система гильбертовского типа. Язык, аксиомы, правила вывода. Алфавит, формулы, аксиомы, правила вывода формальной системы исчисления высказываний. Доказательства, доказуемые формулы ИВ. Примеры доказательств в ФСИВ.	2								
	2. Лекция 2. Понятие вывода, примеры выводов. Теорема дедукции. Синтаксическая эквивалентность формул ИВ. Основные эквивалентности, доказуемые без использования аксиом, содержащих отрицание. Отрицание и константа «абсурд». Два способа введения отрицания в формальную систему исчисления высказываний.	2								

3. Лекция 3. Доказательства эквивалентностей, использующих, аксиомы отрицания. Закон исключённого третьего и закон противоречия. Неклассические пропозициональные логики. Теорема о замене эквивалентных. Дизъюнктивная и конъюнктивная нормальные формы. Семантика ИВ. Непротиворечивость и полнота ИВ. Разрешимость ИВ.	2					
4. Семинары 1-3 Темы: 1-3.			6			
5. Формальные логические исчисления					4	
2. Исчисление предикатов						
1. Лекция4. Формальная система исчисление предикатов ФСИП. Аксиомы, правила вывода. Доказательства, доказуемые формулы ИП. Вывод из множества гипотез, теорема дедукции. Синтаксическая эквивалентность формул ИП.	2					
2. Лекция 5. Основные эквивалентности ИП. Пренексная и предварённая нормальная форма формул ИП. Непротиворечивость ИП – формальное сведение к непротиворечивости ИВ.	2					
3. Семинары 4-5 Темы: 4-5.		4	4			
4. Исчисление предикатов					 4	
3. Основы теории моделей	•			•		

1. Лекция 6. Операции, отношения, алгебраические системы. Язык логики предикатов, вычисление значений термов и формул логики предикатов на алгебраической системе. Выполнимость и истинность формул логики предикатов на алгебраической системе и на классе алгебраических систем. Логическое следствие.	2				
2. Лекция 7. Аксиоматизируемые и конечно аксиоматизируемые классы алгебраических систем. Теории, непротиворечивые и полные теории. Теорема о существовании модели.	2				
3. Лекция 8. Теорема Гёделя о полноте. Принццип компактности Мальцева. Полнота ИП. Теорема Эрбрана.	2				
4. Лекция 9. Применения принципа компактности. Нестандартные модели арифметики и анализа. Сравнение принципа трансфинитной и полной математической индукции.	2				
5. Семинары 6-9 Темы: 6-9.		8			
6. Основы теории моделей				12	
4. Основы теории алгоритмов					
1. Лекция 10. Машины Тьюринга. Определение машины Тьюринга. Операции на множестве машин Тьюринга. Машины Тьюринга для выполнения простейших операций: копирование, стирание, сдвиг, сравнение с 0, увеличение числа на 1.	2				

2. Лекция 11. Машины Тьюринга для правильного вычисления основных функций. Машина Тьюринга для суперпозиции функций. Тезис Тьюринга. Неразрешимые множества, проблема остановки.	2				
3. Лекция 12. Рекурсивные функции. Простейшие функции. Операции примитивной рекурсии и минимизации. Рекурсивность арифметических операций. Операции ограниченного суммирования и мультиплицирования. Ограниченный \$\mu\$-оператор. Рекурсивность основных арифметических функций. Кусочное задание функций. Нумерация кортежей.	2				
4. Лекция 13. Машины Тьюринга для примитивной рекурсии и минимизации. Тезис Чёрча. Совпадение двух понятий алгоритма. Функции, универсальные для данного класса функций. Универсальные машины Тьюринга.	2				
5. Лекция 14. Невозможность доопределения частично рекурсивных функций до общерекурсивных. Функция Аккермана. Теорема Радо. Рекурсивные и рекурсивно перечислимые множества. Теорема Поста - Маркова.	2				
6. Семинары 10-14 Темы: 10-14.		10			
7. Основы теории алгоритмов				16	
5. Приложения к основаниям математики	-				
1. Лекция 15. Формальная арифметика. Система аксиом. Арифметические функции и отношения. Арифметизация. Гёделевы номера. Неполнота и неразрешимость формальной арифметики. Неразрешимость исчисления предикатов.	3				

2. Лекция 16. Аксиоматическая теория множеств. Система аксиом. Порядковые числа. Равномощность. Конечные и счётные множества. Теорема Хартогса. Начальные порядковые числа. Арифметика порядковых чисел. Аксиома выбора. Аксиома ограничения.	3				
3. Семинары 15-16		6			
4. Приложения к основаниям математики				4	
Всего	34	34		40	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Ершов Ю.Л., Палютин Е.А. Математическая логика: учебное пособие().
- 2. Клини С. К., Минц Г. Е. Математическая логика: пер. с англ. (Москва: Мир).
- 3. Лавров И. А., Максимова Л. Л. Задачи по теории множеств, математической логике и теории алгоритмов(Москва: Наука, Гл. ред. физ.-мат. лит.).
- 4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):
- 1. Специальное программное обеспечение в учебном процессе по данной дисциплине не используется.

2.

- 4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:
- 1. Для самостоятельной работы у студентов должен быть доступ к электронному каталогу НБ СФУ.

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Необходима аудитория, оборудованная доской.

Освоение дисциплины инвалидами и лицами с ограниченными возможностями здоровья, в зависимости от нозологий, осуществляется с использованием средств обучения общего и специального назначения.